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Abstract The backbones of three-dimensional critical percolation dusters are exhxted and 
the fractal dimension is accurately calculated using various mass-sealing and box-counting 
techniques to be d: = 1.855 It 0.015. The eigenvalue s p e c ”  of the Brownim umit ion  
probability matrix is studied numerically. which results in the estimates 4 = 3.1310.03 for the 
walk dimension and d: = 1.1810.01 for the spectnl dimension of the backbone. Independent 
calculation of all three quantities allows the conductivity exponent fi io be determined and also 
allows the validity of the scaling relation ds = 2dr/dw proposed by Alexander and Orbach to 
be tested on the backbone. 

1. Introduction 

The backbone part of the percolating cluster has been studied almost as widely as the full 
percolation cluster itself. This is due to the fact that the multi-connectedness of the sites 
plays a vital role in many of the physical processes that are studied on the percolation 
cluster. These processes include gel structure [1,2], fluid flow in porous media [3], 
and especially random resistor networks [ 44 ] .  Other new and interesting applications 
include the dishibution of earthquake hypocentres [7]. The backbone is also interesting for 
purely theoretical reasons. It is another example of a homogeneous fractal which can be 
used for testing various scaling relationships between different critical exponents. There 
are phenomena which are not constrained to the backbone and yet whose properties are 
dominated by those of the backbone. 

One of the more intersting cases is the random walk. A random walk on a critically 
disordered medium may exhibit a behaviour known as anomalous d~jksion, where the 
relationship between the mean-square displacement and the time is no longer Fickian. 
Instead, the particle is slowed down by the disorder in the system and the diffusion law 
becomes 

( R 2 ( f ) )  - t2’dw (1) 

where the walk dimension d, > 2 [SI. The increase in the walk dimension due to anomalous 
diffusion is not only relevant to random walks, but to the problem of conduction in a 
disordered medium. The conductivity exponent of a disordered system E ,  which is defined 
by uk(R) - R-8, where R describes the length scale of the system, can be related to the 
walk dimension of the medium via the Einstein relation 

0305-4470/94/165445t10$19.50 0 1994 IOP Publishing Ltd 5445 



5446 

where e is the carrier charge, n is the canier density, and D is the diffusion constant. Using 
the fact that D - R Z / t  and n - Rdf -d ,  along with (I) ,  we obtain 

(3) 

where df is the fractal dimension of the disordered medium. However, on a percolation 
cluster, all of the current is carried by the backbone sites, so the above relationship can be 
rewritten as [3] 
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d, = 2 - d + di+ f i  

where the fractal exponents now refer to the backbone and 1; remains the same. One can 
often calculate the conductivity exponent much more efficiently using (4) since no effort is 
wasted on the dangling ends of the full cluster. 

Another important exponent describing the fractal medium is the spectral (or fracton) 
dimension ds. This exponent describes the vibrational density of states in the medium as 
given by the relationship 

N(w) - d - 1  ( 5 )  
where w is the vibrational frequency, in the low-energy region. Relating the density-of- 
states problem to that of the return to the origin problem, Alexander and Orbach derived 
the scaling relation [9] 

Recent work by Dhar and Ramaswamy [lo], which was later confirmed by Nakanishi and 
Herrmann [ 1 I], has shown that this conjecture may not hold on some loopless structures 
such as Eden trees. Their argument is that all of the sites are not sampled uniformly but 
instead the walker gets trapped on a specific branch of the tree. Therefore one of the 
assumptions that go into the Alexander-Orbach scaling relation (equation (6)) does not 
hold. For percolation backbones, one would expect that the multi-connectedness of the 
sites assures that the occupation probabilities would be much more uniform, and that (6) 
should hold. 

In order to evaluate d," and d,", we use a method based on the transition probability 
matrix associated with the random walk on the cluster S. The random walk on S has 
associated with it a transition probability matrix W where the entries Wij are just the 
probability for a random walker at site j to jump to site i in a given time-step. This implies 
that W will be an s x s Markov matrix, where s is the number of sites in cluster S. The 
Markov property of W is assured since the transition probabilities for a single site (and 
therefore a single column of W )  must sum to 1 and will also be non-negative. All of the 
properties of a random walk on S should be available through the various properties of W .  

To extract d," from W, we note. that for the eigenvalues A of W near I, the density of 
eigenvalues n(A) should scale as [ 121 

where Ilnhl plays the role of w2 which appears in (5). In order to extract d," from W, we 
must first look at the function [I31 

(8) R ( A )  = n(k)ar(h - 1)' 

where the ai are .just the coefficients from the position autocorrelation function 
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and are determined by expanding the initial distribution of the random walk in terms of the 
eigenvectors of W .  This function should scale, for large A, as [ 141 

Z(A) - IlnAl'-Zld:. (10) 
In order to calculate the conductivity or test the scaling relation due to Alexander and 

Orbach, it is also necessary to know thefractal dimension of the system. One of the most 
accurate ways of determining the fractal dimension of an object constructed on lattices of 
varying size is through so-called mass scaling. The mass (or the number of sites) of a 
percolating cluster backbone constructed between two opposite faces on an L3 grid should 
scale as 

M ( L )  - Ldl" .  (11 )  
The slope of a log-log plot of the backbone cluster mass as a function of the grid size 
should therefore yield an estimate of d:. This method has been used widely to estimate the 
fractal dimension of the backbones and other geometrical objects 116-181. It was previously 
used in 1151 to obtain the fractal dimension of the two-dimensional backbones. 

Additionally, one can calculate a whole spectrum of fractal dimensions D&) in the 
following manner [ 191: 

where U labels the boxes and 

is the fraction of total points falling in box U of linear size E .  For q = 0. this just 
corresponds to the traditional box-counting definition of the fractal dimension. This method 
was most widely used for multi-fractal analysis [20-22], and is especially suited for fractals 
with self similarity extending to arbitrarily short length scales. For simple fractal objects 
(objects which are not multifractals), all of the Ddq)  should be equal and would therefore 
all correspond to df" in our case. 

2. Numerical methods 

The percolation clusters were generated by assigning every site on a simple cubic grid of 
size L3 to be either occupied with probability p ,  where p = 0.3117 % p c ,  or unoccupied 
otherwise. The largest connected cluster on the grid was then identified and checked to 
see if it spanned the entire length of the grid in at least one direction. If it did not, it was 
rejected and the sites of the grid were assigned again. If it did span in at least one direction, 
two points on opposite faces were chosen and the backbone defined between those two 
points was extracted by means of a burning algorithm [17]. 

Mass-scaling calculations were done on these L 3  grids, where 4 4 L < 300. For the 
range L < 100, the number of clusters averaged over to calculate the mass was 107/L2. 
For L 2 100, the number of clusters used was 500. This allowed us to get a sufficient 
number of data points for large L and to see if there were any finite-size effects for smaller 
L ,  while still obtaining reasonable accuracy for a given L. 

The box counting was done using the method described by Liebovitch and Toth [23] 
with the modification of cyclic bit ordering as described in detail in [24]. A value of 
L = 512 was used in order to get as many factors of two as possible in box size, as our 
resolution was ultimately limited by the lattice spacing. This large value of L required us 
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Table 1. Toml number and average size of the clusters used in the calculation of 4 and d:, 

L Samples Cluster sirc BB s i x  

70 1400 10774 1306 
100 917 21728 2689 
150 898 72202 5379 

to use a bit-based algorithm to generate the clusters and extract the backbone. Each site 
on the cluster was allocated a total of two bits of memory. This allowed the site to be in 
a total of four different states, which was enough to cany out the cluster creation, largest 
cluster extraction, and burning algorithm in a practical manner. The computer memory was 
allocated dynamically during the construction of each cluster and released after a compressed 
list of points describing the backbone was created. This allowed us to run the L = 512 
cases using the amount of memory on readily available computers and not supercomputers, 
which were not necessarily as accessible. 

Although the value for D&) described in (12) is obtained in the E -+ 0 limit, in 
practice the value must be estimated from a linear fit to a range of E which is determined 
by inspection of the data [23]. This is because our fractal has a small length cut-off, and as 
E becomes approximately equal to the lattice spacing, the equation no longer makes sense. 
The values for large c also cannot be used since they are not adequately measuring the 
fractal nature of the cluster. For our values of q. values of E were chosen in the region 
2 4 E g 128. 

The eigenvalue and eigenvector coefficient extraction was done using a variation of the 
Lanczos method which is useful for large, sparse matrices as described in [14]. The specific 
algorithm used was first proposed by Arnoldi in [25] and later expanded on by Saad [29], 
and then adapted for diffusion problems in [14]. In this method, a subspace of the domain 
of the original matrix corresponding to the largest eigenvalues is approximately extracted, 
and then the corresponding submatrix is exactly diagonalized to extract the eigenvalues 
and eigenvectors. This method has proven itself to be very useful in this type of problem 
[ 12,141 since it allows the upper end of the eigenvalue spectrum of large sparse matrices to 
be extracted accurately without having to store the entire matrix in the computer's memory. 
Backbones of clusters built on lattices of L = 70,100 and 150 were used to determine d," 
and d t .  These were sufficiently large to contain enough data where the scaling relation can 
be tested (where A is very close to 1) and small enough to get a large sample space of these 
clusters. Table 1 shows the number of samples taken for each value of L, along with the av- 
erage number of sites in the average spanning cluster and its backbone used in each sample. 

For all of the results in this paper, the random walker follows blind ant statistics. This 
means that on a simple cubic lattice with coordination number z = 6, the walker has a a 
probability of moving to an adjoining occupied site, and a probability of y/6 of remaining 
in place, where y is the total number of blocked sites. All of the calculations took place on 
either a Kubota Pacific P-3000 miniLsupercomputer or an IBM RS-6000 based machine. 

3. Results and discussion 

3.1. Estimarion of df" 

The mass scaling is shown in figure 1, where a log-log plot of the mass of the backbone 
versus lattice size is given. For small L, there is a distinct upward curvature that is very 
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Figure 1. Plot of lhe mass of the backbone. Y(L) as a function of the lattice size L. The 
straight line is a fit to the points wilh L 40, 

easy to see when compared against the best-fit line for the points with L 2 40. The slope 
of this line yields a df" = 1.855 f 0.015. 

In order to take into account the finite-size effects that were clearly present in figure 1, 
we assumed that the first-order correction to scaling was of the form 

M - L$(1 +cyL-a). (14) 

If this is the form of the scaling, then the slope of the log-log plot in figure 1 should behave 
as 

To extract o, we plotted the effective slope of graph of figure 1 versus K O ,  and found 
that the most linear plot resulted when w was chosen as 1. This is consistent with previous 
correction to scaling results [26]. 

To show that the previous estimate for df" is likely to be close to the asymptotic exponent, 
a plot of the effective slope of the data in figure 1 is shown in figure 2, plotted against 
1/L. For L 6 25, the value of the effective exponent is the slope of a line formed by all 
of the points with a value of L less than or equal to that point. For L > 25, the effective 
exponent was calculated in a similar manner for each point, but instead of plotting all of 
the points, the average of each set of five points was taken, and that average value was 
plotted. This made the data. visualization clearer and allowed us to calculate error bars 
which corresponded with the fluctuation in the data. For L > 25 the fluctuations in the 
values were much larger than the change in the average values, so we expect the error 
bars to correspond to the fluctuations and not from the actual spread in the data caused by 
binning different values of L. 

The data acquired using the box-counting method on 100 randomly generated disorder 
configurations of size up to L = 512 are shown in figure 3 for various values of q. For 
q = 0, the box-counting method did not accurately measure the fractal dimension of the 
set. This was due to the fact that for q = 0, the information on the number of points in 
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Figure 3. A log-log plot of f(c) = xr$' [pv(c) ]q  versus the box size c. The lines drawn 
through the points represent the best-fit line to the points where 2 < 6 < 128. 

each box was effectively lost. This is not always a problem when studying objects such 
as attractors in nonlinear dynamics which have continuous length scales, but can be when 
studying objects on a discrete grid which limits the possible number of box sizes. However, 
for q > 2, we obtained numbers that were always close to 1.86. Table 2 shows the effective 
fractal dimension for the different values of q. The box-counting method was not quite as 
precise as the mass-scaling method in this case, but it does provide a reasonable check of 
the results. 
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Table 2. Calculated values of Dr(q) as a function of q .  

4 0  1 2 4 6 8 

Ddq) 1.74i0.03 1.85*0.02 1.86*0.01 1.87f0.01 1.87+0.01 1.865f0.010 

E 
C 

10' 

1 o - ~  10-4 i o3  10- 
Iln hi 

Figure 4. A plot of n(A) versus Iln AI for L = I50 (0). 100 (A). and 70 (+) 

3.2. Estimation of d," and d,". 

The data shown in figure 4 is a collapsed log-log plot of n(A) versus llnhl for L = 70, 100 
and 150. All of the data lie very close to a straight line, although there is a bit of structure 
to the points corresponding to h very close to 1, and there is a slight decrease for some of 
the smaller eigenvalues for L = 70 as the data begin to leave the scaling region in which 
(7) is valid. A linear fit to these data (with the points which are not in the scaling region 
removed) yields a value of 0.410 f 0.005. A fit to only the points in the L = 150 case 
gives a similar result. This corresponds to a value of d: = 1.18 It 0.01. We believe this 
result is very accurate since it was not only obtained independently for different values of 
L, but smaller subsets of the data for each L were also analysed and separately found to 
have a similar slope. 

Figure 5 shows the data for a@) plotted against Ilnhl on a log-log scale. Again, the 
data follow a fairly straight line, but the fluctuations are more prominent in these data than 
they were for the n(h)  data. Since most of the fluctuations seem to correspond to the similar 
but smaller fluctuations in the n(A) data, it turns out to be very useful to look at the quantity 
x(h)/n(h).  According to the scaling laws presented in section I ,  this function should scale 

n ( ~ ) / n ( ~ )  - /in ~/~-': '~-'/e. (16) 
A plot of this function for L = 150 is shown in figure 6. These data are much smoother, 
and one can see smaller details of the structure. The only part of the data deviating from 
a straight line is in the large-A region, where they seem to decrease. A linear fit to the mt 
of the data gives a slope of 0.77 i 0.01, which implies d," = 3.13 f 0.03 (using the value 
of d," calculated above). 

as 
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Figure 5. A plot of n(A) versus [InAI for L = 150 (0). 100 (A), and 70 (+). 
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Figure 6. A plot of n(A)/n(A) vetsus l lnl l  for L = 150 (O), 100 (A), and 70 (+) 

The region of largest h corresponds to long timescales via the Laplace transform where 
[lnhl e I-'. Thus, the region excluded from the fit roughly corresponds to the time- 
scales t > to where the corresponding length scale for diffusion is given by l > & c &. 
Numerically, the crossover values occur in figure 6 where llnll * 1 x 
and 9 x 10" for L = 70, 100, and 150, respectively. In comparison, (0.27 x L)-dw gives 
1 x 3.3 x and 9.3 x This suggests that the random walk is noticing the 
finite size of the cluster at length scales of approximately L / 4 .  This is not an unreasonable 
length scale since the average is effectively over all walks in the cluster, and the finite 
nature of the backbone would be apparent much sooner than the finite size of the cluster. 

3 x 
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3.3. Discussion of resulis 

The estimate of d! is significantly larger than previous estimates which used the same or 
similar methods. In [ 171 mass scaling of the backbone of incipient infinite clusters was 
done on cubic lattices of linear size L, where 6 g L < 40. For this case they obtained a 
value of 1.77f0.07 ford!. H e m "  and Stanley [27] studied the distribution of the size 
of the 'blobs' which made up the backbone of incipient infinite clusters to determine that 
df" = 1.74 zk 0.04. However, these were also on relatively small clusters, with 4 g L < 60. 
We believe that the reason our estimate is so much larger than previous estimates is that 
there is a significant unaccounted finite-size effect in their data. This can be easily inferred 
from our data in figure 2. When we use a subset of our data that corresponds to the data 
used in earlier works, we get results similar to the previous estimates. The value of df" 
was also estimated by Hong and Stanley [28] using series-expansion techniques, and they 
obtained a value of 1.83 & 0.08 in three dimensions. 

We can now test (6) using the values we have estimated. From these values we get 
2d;je = 1.182 f 0.015, whereas our independent estimate of d," is 1.18 f 0.01. Unlike 
the results of [lo] and 1111, the scaling relation given by (6) appears to hold very well for 
the backbone. 

Using equation (4) and the values determined above, one gets a value of 2.2810.03 for 
p. If one assumes that (6) is correct, then d," can be written in terms of d! and df", and the 
error in ,C can be reduced even further. This result confirms the value of ,C that has been 
estimated by a number of people very recently. In [30], finite-size scaling arguments are 
applied to direct conductance measurements of cubes with 2 6 L 6 80 to obtain the value 
of $ = 2.276 f 0.012. Our result is very close to this one, and if one considers the value 
of ,C in [30] and our value of d; to be independent quantities, then one obtains an even 
more precise value of d: = 3.126 i 0.015. One can also calculate ,C from Grassberger's 
[31] precise estimate of p / v  = 0.4742~0.006. This is done by using ( 3 )  and calculating d,  
from the formula 

where k = 0,200 f 0.002 [32]. Using these numbers, one gets a value of ,C = 
2.29 f 0.04. The consistency of all of these values seems to strongly imply that the 
value of jl is very near the value we get using the direct estimates of d t  and d! as given 
above. 

4. Conclusions 

We believe that the values estimated independently here for df", d," and d," (shown in 
table 3) represent a significantly improved accuracy over previous estimates for the three- 
dimensional critical percolating backbone. The value for d! was calculated by simple 
but largescale mass-scaling techniques and confirmed by box-counting. These exponent 
estimates are both consistent with the Alexander-Orbach scaling relation df = 2df" /4  as 
applied to the backbone, and with previous results for related exponents on the full cluster. 
The ArnoldiSaad method described in [14] proved to be an effective algorithm for this 
type of problem which involved calculating the largest eigenvalues of a very large sparse 
IMtTiX.  
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Table 3. Values of critical exponents for the the three-dimensional percolating backbone 

d: 1.855 & 0.015 
d ,  3.1350.03 
d: 1.18?cO.O1 
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